ONE Simulator
Opportunistic Network Environment Simulator

Prof. Carlos Oberdan Rolim
ONE Simulator

- Written in Java
- Agent-based, discrete event, network simulator
- Support Mobility Models
- Several built-in DTN routing algorithms

Site:
http://www.netlab.tkk.fi/tutkimus/dtn/theone/
Main functions

- Node movement
- Inter-node contacts
- Routing and message handling
- Results and analysis
 - Visualization
 - Reports
 - Post-processing tools
Node Capabilities

• Nodes \rightarrow basic agents in the simulator

• Models a mobile endpoint acting as store-carry-forward router

• Group of nodes in simulation world
 – Each group is configured with different capabilities
Node Capabilities (cont.)

• Modules in each node have access to the node’s basic parameters
 – including the position, current movement path, and current neighbors

• Node energy consumption model
 – energy consuming activities such as transmission or scanning
Mobility Modeling

• Node movement capabilities are implemented through mobility models

• Three types of synthetic movement models are included:
 – random movement
 • Random Walk (RW) and Random Waypoint (RWP)
 – map-constrained random movement
 • wkt files
 – human behavior based movement
 • Working Day Movement (WDM) model

• Support to load external movement data
Routing

• Simulator includes a framework for defining the algorithms and rules used in routing and comes with ready implementations of well known DTN routing protocols

• There are six included routing protocols:
 – Direct Delivery (DD)
 – First Contact (FC)
 – Spray-and-Wait
 – PRoPHET
 – Max-Prop
 – Epidemic

• Support to adding new routing protocols
Application Support

• Two ways to generate application messages inside the simulation
 – message generators
 – external event files
Reporting and Visualization

• Graphical User Interface (GUI)
• Reports
 – Some statistics
 – Post-processing tools

Example message paths from node p1 to p2

Screenshot of the ONE simulator’s GUI
Creating Simulation Scenarios

• Scenarios are built by defining the simulated nodes and their capabilities

• Defining the basic parameters
 – Number/group of nodes
 – storage capacity
 – transmit range and bit-rates
 – movement and routing models to use
 – Specific parameters

• Simple text-based configuration files